How should WE teach and assess fluency?

Recently, there has been a lot of discussion in the MTBoS about fluency.  I think Jamie Duncan is right. It is that time of year.  Triggered by state tests and end of the year expectations, some teachers start to panic and grasp at the paper thin promise of flash cards and algorithms. “If I just show them how to do it, they can apply it to the test.” “I don’t have time for deep understanding. The test is next week.”  I could write a whole different blog post describing my opinions about state assessments, but I am going to take a different approach.  Instead, I would like to talk about ownership and agency.

In our district, we have been working on transitioning to a standards based system of teaching and learning.  For the past six years, we have been learning to speak the language of the CCSSI for math. This year, we started to transition our report cards from letter based to standards based.  It has been a challenging, enlightening, rewarding, frustrating, and overwhelming experience.  Some of the stickiest conversations we have had revolve around teaching, assessing, and reporting whether a student is fluent with their ability to add, subtract, multiply, and divide.

I have facilitated countless professional development sessions on the importance of using and understanding the properties of operations.  I have led book studies on Number Talks and Number Sense Routines. I have modeled number talks using images and numbers. I have shared  videos from Graham Fletcher and articles by Jo Boaler. Every teacher has access to Number Talks by Sherry Parish, the Minilessons series by Catherine Twomey Fosnot and Willem Uittenbogaard, and the Mastering the Facts series by Susan O’Connell and John San Giovanni. Our district purchased multi-user licenses for a strategy based Computational Fluency Screener from K-5 Math Teaching Resources and integrated the resource into our curriculum maps.   I have organized and led K-12 summer leadership institutes using books like Building Powerful Numeracy.  My colleagues have led book studies with books like Classroom Discussions and Intentional Talk. In short,  we have spent a lot of time discussing fluency in our district.

Or have we?

Recently, I asked myself, “have we been discussing it or have I just been showing people how it should be taught and assessed?”

I thought about this for a while and I realized that I have  been trying to solve a problem without collectively identifying what the problem is.  Why was I doing this?  Because I was terrified to give up control. I thought, “I can’t ask teachers to identify expectations for teaching and assessing fluency!  What if they don’t say what I want them to say? What if they decide to use timed tests and flash cards? I have to show them all the evidence and then tell them how we should do it because I am the math coach who has all the background knowledge.”   I was scared so I just kept professionally developing everyone and avoiding tough conversations.

A few weeks ago,  I came to the realization that I was never going to get people to change the way they teach and assess fluency if I didn’t meet them where they are and give them a voice. I was at a second grade team meeting and the teachers were discussing what the words “from memory” meant in this standard:

CCSS.MATH.CONTENT.2.OA.B.2
Fluently add and subtract within 20 using mental strategies.2 By end of Grade 2, know from memory all sums of two one-digit numbers.

The conversation started to make me uncomfortable:

  • “From memory means they have their facts memorized. They may have learned the fact by using strategies, but now they have it memorized.”
  • “If we don’t time them, then how will know if they are efficient?”
  • “Is it okay if a student is asked to solve 8+7 and he/she says, “I know 7+7 is 14 plus one more is 15 or does he/she have to say “15” without using a strategy?”
  • “If they are using a strategy than they don’t know it from memory.”
  • “Isn’t it more important that they understand and use  the properties?”
  • “But eventually the strategies should lead them to knowing it from memory?”
  • “But some kids are just always going to take more time and it doesn’t mean they have less understanding.”

I wanted to just tell everyone what to do.  I wanted to say, “We aren’t going to use timed tests. “From memory” is different from “memorization”.  Let me tell you why.”  In that moment, I realized that I had been telling them why for years and, yet, they were still asking the same questions. And, do I really know the answers to these questions?

I decided to put the question out on Twitter.  Being a part of the Math Twitter Blogoshpere has helped me see the importance of being vulnerable. So, in the middle of our second grade team meeting, I projected my computer screen and asked Twitter for help. We sat and watched as the feedback poured in. You can click the picture below to see the whole thread.

Screen Shot 2017-03-31 at 10.06.33 AM

We didn’t get to see all the responses during our meeting because  we were close to the end of our meeting time. However, in that moment, I realized that whatever we decide about fluency expectations, we need to decide it together. I asked the administrative team if I could have two hours of our early release day on March 17th to facilitate a discussion about teaching and assessing fluency. They said, “sure.”

I met with the elementary interventionists and, together, we planned the two hours.  We decided that our goal was to bring everyone to the table and find out what we, as individuals, think about teaching and assessing fluency. Then, the next time we meet, we can develop a collective definition of fluency and expectations for teaching and assessing it.

One of the first things we did was ask each teacher to explain how he/she defined fluency. Then, we did something transformative. We asked teachers to read each other’s responses.

Screen Shot 2017-03-31 at 10.15.22 AM

You can read our responses by clicking on this link. If you do take time to read the responses, please take a minute to respond in the comments:

  • What do you notice?
  • What do you wonder?

After people had some time to read and reflect on their colleague’s perspectives,  we showed them  Graham Fletcher’s ignite talk about the difference between “from memory” and “memorization”. Next, we had them choose an article to read about fluency. After they read the article, they were asked to find quotes from their article that addressed teaching and/or assessing fluency.  We asked them to document those quotes in a google form.

Screen Shot 2017-03-31 at 10.20.47 AM

Finally, we asked them to reflect on some pivotal question:

Screen Shot 2017-03-31 at 10.27.11 AM

As a school group, we asked everyone to look at all the evidence we had gathered and reflect on whether we have a consistent vision of teaching and assessing fluency. We asked them to identify practices in our district that are aligned and are not aligned and record them on chart paper

We asked everyone to fill out a form with recommended next steps.  Some people said we should establish a committee of  representatives and some people said we should continue to do the work as a whole group. Some people were frustrated that some of their colleagues still thought timed tests and flash cards were acceptable. Some people wondered how we assess fluency without timed tests. Some people resented having to be a part of this conversation because they think, “I know what I am doing. Why do I have to worry about what everyone else is doing?”

I think they wonder, why do I have to be accountable for what happens in other classrooms and other buildings?  Collaboration is confusing, laborious, and rife with conflict. Collaboration often causes feelings of vulnerability and humility. Collaboration requires defending your perspective and exposing yourself to hard questions about what you believe. Collaboration takes a long time. I have asked myself the same question, “why do I have to listen to other people talk about timed tests and fact cards when I don’t agree with those practices.”  I think the answer lies in the fundamental idea that teaching is a collaborative effort.

I closed the session by saying, “I have a clear vision for what I believe it looks like to teach and assess fluency, but I realized that my vision can only take us so far.  We are a collaborative group and what we do in our individual classrooms impacts what our colleagues  do in their classrooms. We have the same students. I can’t, and won’t, stand here and define fluency for you. We have to establish fluency expectations together because we can’t hold each other accountable for a vision that is vague and misaligned.”

I think our next step is to create a vision. It might take us a little while, but it will be ours.

 

The Lure of a Good Rabbit Hole

A week ago, I facilitated a learning lab in a fifth grade classroom. We were trying to explore these questions:

  • What can we learn from student’s verbal explanations?
  • What can we learn from student’s written explanations?
  • How is the information we get from written explanations similar to and different from the information we get from verbal explanations?

Two nights before the fifth grade meeting, I attended a class with Kristin Gray. Kristin encouraged us to consider how we illicit and analyze student understanding. She guided us through some great activities and encouraged us to try them and think about what we learned about student thinking.

I decided to try using a Numberless Word Problem and Talking Points. I have used Numberless Word Problems before, but I had not tried asking the students to choose their own numbers.   When I shared my ideas with the 5th grade teachers, we decided we would end the lesson with a journal prompt. This would give us an opportunity to juxtapose student’s verbal and written responses.

Mrs. G, the fifth grade teacher, told us that her students were about to start investigating division of decimals. She wanted to use the learning lab as an opportunity to see what her students were bringing to the investigation.  We decided that our student objectives would be:

  • How can explaining my thinking help me learn?
  • How is dividing decimals similar to and different from dividing fractions and dividing whole numbers?

We planned on spending more than one class on these objectives.  The learning lab was our first step.

I started the lesson by introducing a numberless situation:

Screen Shot 2017-03-25 at 5.24.20 PM

This prompted immediate conversation and, understandably, the students wondered more than they noticed:

  • Is she hunting?
  • Why are you outside?
  • Are you cold?
  • Can you see?
  • Is it a full moon?
  • Are your chickens okay?
  • Are you sleeping?
  • What are you wearing?
  • What time is it?  
  • Is she awake?
  • Does she live in town or out in country?

Then, I gave them the rest of the problem, but I intentionally left out the specifics.

Screen Shot 2017-03-25 at 5.29.00 PM

This is where things started to get interesting. I asked for some possible numbers that we could use in this problem.

Screen Shot 2017-03-25 at 5.33.47 PM

One student, T,  volunteered that he would like to use one-quarter of a mile as the length of the driveway and 2 miles as the amount that I wanted to walk. I asked him how I should write “one quarter”. He said I should write one-fourth. I wrote down 1/4 mile and I asked him if he could tell me what one quarter was as a decimal. He said, “point seven five.” I said, “and how would you say that as a decimal?” He responded, “seventy-five hundredths.” I waited. Nobody said anything. After several seconds of silence, one student said, “Wait. I don’t think seventy five hundredths is one fourth because .75 times 4 is going to be more than one whole.”

I asked T, “What do you think about that?”

He said, “I am not sure.”

I told him that I was going to collect some other numbers from people and he could have some time to think about it and let us know if he wanted to change anything about the numbers he chose.  Then I called on two more students and they shared their ideas for numbers. I was just about to move onto the next part of the lesson when one of my colleagues chimed in, “hold on,” she said, “you forgot to go back to T.”

Right!

I asked T if he had any thoughts about seventy-five hundredths being equivalent to one-fourth. He said, “yes. I changed my mind. I think it should say twenty-five hundredths.”

“Why?”

“Because there are four quarters in a dollar and one-quarter is twenty-five cents or twenty-five hundredths.”

“Awesome. Thank you so much for sharing your thinking with us.”

At this point, I asked the students to choose any of the suggested pairs of numbers and solve the driveway problem.  Many students chose to try the first three sets of numbers and they approached the problem differently. Most students arrived at answers that made sense for these numbers, but my favorite conversation involved justifying how many times I would have to walk around a driveway that is 9 tenths of a mile long if I wanted to walk 1 and 8 tenths of a mile.

As students were checking in with each other and defending their solutions, I stumbled upon a fascinating argument bubbling up.  Is the answer 1 or 2?

Screen Shot 2017-03-26 at 9.00.00 AM

I looked down at this student’s paper and saw the number one circled. I asked, what do you think the answer is?

“The answer is 1.”

Wait. What? “Can you tell me more about that?”

“Sure. If your driveway is nine-tenths of a mile long, you will have to walk around your driveway one time in order to walk 1 and 8 tenths of a mile.”

“What do you mean  walk around?”

“You will have to walk up to the end of your driveway and then back down again to your house so that is one full loop.”

Whoa. I did not see this coming. I assumed when I told the kids that I walked around my driveway they would picture a circle.  Some groups actually asked me what my driveway looked like. This one didn’t.  Once again, my assumptions failed me.

“So,” I said “Some groups got 2 for an answer. What do you think of that?”

“Why would it be 2?  If it was 2, you would count your trip to the end of the driveway as one whole trip and that wouldn’t make any sense because why would you ever just go to the end of the driveway and stay there?  The problem says “around” so she goes up and back one time.”

Huh.  Fascinating. What do I do with this?  I decided to call everybody back together.  Both groups did a great job of arguing their points.  We decided that the solution would depend on how you interpreted what constituted a trip around the driveway. Interestingly, they all agreed on the math. It was the interpretation of the math that was nuanced and arguable.

Screen Shot 2017-03-26 at 9.00.34 AMScreen Shot 2017-03-26 at 9.00.26 AMScreen Shot 2017-03-26 at 9.00.20 AMScreen Shot 2017-03-26 at 9.00.00 AM

We spent some time discussing how many times I would have to walk around my driveway if it was .3 of a mile long and I wanted to walk 1.5 miles.  We had a similar discussion about whether I would need to make 5 trips or 3 trips.  My favorite comment in defense of 3 trips:

“Why would she just stop at the end of her driveway?  What is she just going to stay there forever?”

I was really curious to see if any of the students tried to use the numbers .99 for the length of my driveway and 1.999 for the amount that I wanted to walk.  Some did. Have I mentioned how much I love working with this class?

One student started the conversation by telling us that it couldn’t be done. Here is his work:

Screen Shot 2017-03-26 at 9.38.50 AM

Another student argued, “Sure it can be done. She just needs really small feet.”

I prompted, “Tell us more about that.”

“Well, she would only have a teeny space left after she walked up and down so she would have to have teeny feet.”

Wow. At this point, I didn’t know what to do. Should I jump down this rabbit hole?  I looked at the 6 adults in the room.  We hadn’t even gotten to the talking points yet.  I asked for advice.  Should we explore this?

Fortunately, these teachers know me really well. They know that I am mildly addicted to rabbit hole jumping. They are type As and I am type B through Z. Many of them were shaking their heads no. Mrs. G gave me an out. She said, “I wonder if I could come back to this conversation with my students.  We definitely have a lot to talk about, but I would like to see what they do with the Talking Points routine and I worry that we won’t get to it.”

Fair enough.

I introduced the Talking Points routine.  These kids are used to engaging in math discussions so they adjusted to the expectations fairly quickly.

Screen Shot 2017-03-26 at 9.50.16 AMScreen Shot 2017-03-26 at 9.50.21 AM

I wondered if they would have any disagreement about whether you learn something every time you get an answer wrong.  They didn’t. They all said making mistakes helps you learn. Mrs. G and I talked about this afterwards and she decided she was going to continue to revisit this talking point.  We wondered how we could get them thinking about how we actually learn from our mistakes – just because we make a mistake doesn’t mean we learn from it.  I was glad to see that none of the teachers pushed this thinking on the students. If they go there, I want it to be organic, not because we told them so.

The students had the gist of the routine so we moved on.  We asked them to think about this prompt and decide whether they agreed, disagreed, or were unsure about it.

Screen Shot 2017-03-26 at 9.54.59 AM

I settled down next to a group of students and watched them. Each of the students did some work on his/her whiteboard. When it was time to discuss, the first three students in the group disagreed.  I watched M carefully. I knew that, on her board, she wrote agree and her math confirmed her opinion.  As each person in her group spoke, she covered up more of her white board. By the time it was her turn, she had her white board pressed firmly against her stomach so no one could see it.  She looked at me. I told her she should share her thinking, regardless of whether it was different.  I reminded her that this routine was about learning from each other.  She and I have a good relationship.  I am so grateful for that.

She described to her classmates that there are 20 groups of one tenth in the number 2. She showed them her number line. Then, each group member went around a second time and shared whether or not they had changed their thinking.  Several students changed from saying they agreed to saying they were unsure.  They sited M’s explanation as their reason for changing their minds and explained that they were still wondering about the difference between 20 groups of one tenth and 20 tenths.

At this point, we were almost out of time. I really wanted to give the kids a chance to write. We gave them a choice for writing prompts:

Screen Shot 2017-03-26 at 10.06.46 AM.png

We got some really interesting responses:

 

So… at this point, I have a classroom full of students who are still unsure about a whole lot.  This makes me feel unsure about a whole lot.  Understanding division is hard. Understanding division of fractions and decimals is really hard.  Some students wrote about how the answer couldn’t be 20 because when we divide the answer gets smaller. Several students were representing the driveway problem with incorrect equations:

Screen Shot 2017-03-26 at 10.14.47 AM

There is not doubt in mind that there is a lot about dividing decimals that these students don’t know yet.  Sometimes, when I think about all the things my students don’t know, I get overwhelmed.  I find it more helpful to think about what they do know.  I think these students know a lot.  They know that context matters.  They know that it is okay to make mistakes. They know it takes time to truly understand something. They know that there is a relationship between multiplication and division and also a relationship between addition and division.  I am looking forward to revisiting this class next week and continuing the conversation about all of the things they still wonder.

Kristin, I will definitely use these two routines more often.  I learned so much.  When I asked the fifth grade teachers what they learned, they said:

  • These routines provide organic conversation.
  • They force the students to actually talk.
  • Small groups before large group discussion leverages the discussion – increases engagement.

and I would add…

  • They provide instant access to a myriad of potential rabbit holes.

One Group of Itself

Have you ever thought about how difficult it is to truly understand another person’s perspective?  I think about it all the time, especially when I am working with students. As a facilitator of learning, it is my job to interpret what students are thinking. It seems so attainable when I type the words, but my experience tells me that the quest  is actually quite elusive because interpreting is different from judging and thinking is often different than saying.

Screen Shot 2017-03-19 at 9.33.54 AM

Last week, I showed this picture to a group of fourth graders and asked them, “what do you see and how do you see it?”  I chose this image because I was hoping it would prompt students to use strategies and numbers that would encourage an exploration of the associative property.

I went into the lesson trying to capture two strategies that we could compare and connect during our next math class. I stumbled upon something else.  As always, my students got me thinking more deeply.  This time it was about units.

J was the second student to share his thinking. He doesn’t usually volunteer to talk. In fact, when he first came to this class, he hardly talked at all. It is often difficult to truly understand what J is thinking and I have to tread carefully when he shares because I don’t want him to shut down.  As soon as I saw his hand up,  I knew it was important honor his initiative.  When he started to describe that he saw 9 by 12, I almost assumed that I knew what he meant. Fortunately, the little voice in my head told me to shut up and listen because my assumptions would have been wrong. Check it out:

Screen Shot 2017-03-19 at 9.33.54 AM

Did you hear what he said?  He said he saw 9 by 12 and his classmates and I assumed he saw the larger rectangle made up by the holes in the pretzels, but when he described what he saw in more detail, what he really saw was 9 pretzels, each with 12 holes in them.

After J shared his strategy, several other students shared how they saw the pretzels. Here’s what they said:

  • “I see 3 by 3.”
  • “I see 9 three by fours.”
  • “I see twelve holes in each pretzel and 9 pretzels.”
  • “In each pretzel, I see three groups of four.”

One student said she saw nine 1 by 12 pretzels. She struggled to articulate it. First she said 12 times 1. Then, she said 1 times 12. Finally she settled on nine 1 by 12 pretzels.  Then, a different student explained, “I see one group of itself. I see 1 times 12 in E’s pretzel.” Again, they are mucking around with this word “by” that they have heard and are now trying to make sense of. Is she wondering about the relationship between the individual pretzel and the larger picture of pretzels? I wish I had asked her to tell me more.  After listening to her, I see something new: I could see one group of 12 nested inside a larger group of 12 if there were 4 pretzels in each of the three rows. I could see one group of itself.

I asked each of the students to show us how they saw what they saw. I had intentionally chosen this image because I was hoping students would use three factors to describe it. I asked one more time if anyone saw it a different way.  One student said he saw three, three by twelvesScreen Shot 2017-03-20 at 1.47.31 AM

Another student said he saw three, four by nines:

Screen Shot 2017-03-20 at 1.44.25 AM

The last student said that he saw 88 holes. He went on to describe how he calculated 88. He said “I knew that five 12s is 60 and ten 12s is 120 so if I take away one of the 12s… oh wait. I think there are 108 holes.”  I thought is was interesting that he was the only student to calculate the total number of holes.

We ended our number talk here.  I did use two of the strategies to plan a number talk for a 4th grade learning lab the next day, but that is another blog post. Right now, one weeks later, as I sit and listen to the number talk, I still wonder so much. I wonder about the word “by”.  I have always associated the word “by” with measuring area.  If I am shopping for  a rug that is 5 by 8, I am looking for the rug to be 5 feet long and 8 feet wide. J and E were thinking about the word “by” as a general way to describe a multiplication situation. We had some trouble interpreting what they were saying.  We had to navigate from the math to the pretzels and then back to the math again.

I used to think Number Talks involved me bringing the numbers and my students operating with them, but now I realize that there is so much value in letting my students bring the numbers to the Number Talk.  By starting with an image, I put the students in charge of using math words and symbols to describe what they see. Will they describe it as a relationship or a quantity? Or maybe a relationship between quantities? Starting with an image also lowers the floor and raising the ceiling of the task.  I am not assigning an operation to be used. The students choose which operation will help them make sense of and describe what they see and, as they describe, I can listen and try to interpret what they understand.

I am not saying I will never use numbers in a number talk.  I am just enjoying the opportunity to change my perspective, push my thinking, and be slightly uncomfortable with the math I think I know.

I used to think the properties of operations were all symbols, numbers, and rules, but they are so much more than that. I think, maybe, they are more like filters with which we interpret and explain our world. I have often heard people say that math isn’t “breakable”.  At first, I thought they meant that Math was impenetrable, predictable, solid. I never really felt comfortable with that definition. Now, I wonder if they meant something different. I am realizing that math is so much more bendable than I ever knew.

 

Thank you Christine Newell and Number Talk Images for the pretzels.

The Sound of Not Settling

Last night, at 10:00 p.m., I left the Phoenix airport.  Eleven hours and three airports later, I arrived at my home in Maine.  I made myself a sandwich and a cup of coffee, changed my clothes, brushed my teeth, and headed to school.  I was exhausted. I had a headache.  My brain was pretty foggy.  I was scheduled to meet the 6th grade teachers at one of our elementary schools at noon.  They were going to observe me do two number talks in two different 5th grade classrooms in two different buildings.  All I could think was, “What the hell was I thinking? These are going to be the worst number talks ever.” I tried to plan them on the plane ride, but I kept falling asleep.

I was so tired on the drive to Wayne that I had to turn the music up really loud to keep me awake.

I was late. I was kind of on the verge of tears – not because I was sad- but because I was just so exhausted – physically and emotionally.  I was tapped out. How was I going to model a successful  number talk when I could barely keep my eyes dry and open?  On the way into the building, I started to berate myself:

  • Why do I always schedule too much?
  • Why don’t I leave more time to plan?
  • Why I am always late?

Fortunately, it was a short walk to the building.  When I arrived at Sue’s room, she looked up and smiled. I said, “I am so sorry I am late.” She told me not to worry about it and I could tell she meant it.  The sixth grade teachers spilled in behind me. I introduced everyone.  I asked the kids if they would like to do a number talk with me?  They were all smiles.  Sue walked over to the white board and grabbed a marker. She asked, “do you want me to record?”

“Absolutely.”

I showed Sue the number string I was thinking of using and told her we could go as far as she thought we should. She said she thought it was a good fit and wrote on the board:

Screen Shot 2017-03-21 at 9.01.47 PM.pngQuiet thumbs.  Thoughtful eyes.  Squished up faces and moving lips. I felt myself breathe.

“What do you think?” I asked.

Somebody said, “4.”  Lots of agreement.

“Did anyone get a different answer?”

Nothing.

“Who wants to tell us how they solved it?”

P nodded and smiled.

Sue said, “do you want to come up and show us or would you like me to record for you?”

“I would like to record it. I used the number line,” he smiled and looked at Sue “Mrs. Hogan has been working on this one. It isn’t her go-to strategy.”

I asked him if he could tell us what he meant.  He looked at Sue and she nodded. She said, “it is okay. You can tell them.”

He continued, “the number line is a challenging model for Mrs. Hogan because she didn’t learn to divide fractions using models.  She likes to use the bar model, but lately she has been stretching herself.”

I asked him, “do you like using the number line model to divide fractions?”

“Yes. It is kind of my go-to strategy. It makes the most sense to me, but I can use other strategies too.”

“Cool,” I said. I sat down on the floor beside M so P had room to share. He drew a number line and told us, “You see.  I divided the two wholes into halves.  So I have four.”

Screen Shot 2017-03-21 at 9.18.22 PM.png

“Four what?” I asked.

“Four groups of one half.”

I asked if anybody else wanted to share a different way that they came up with the answer.

W drew a bar model.  M drew two rectangles and divided them into halves.

We moved on. Next we tried two divided by one third.  All the kids got six for an answer. A couple of different kids shared their thinking.  I asked them if they wanted to try something a little more challenging. I said, “I kind of want to find a problem where we get some different answers. So we can argue about them a little.”

Someone chimed in, “politely argue.”

I checked in with Sue about the next problem. She thought it looked great.  She said, “This one will be interesting.”

She wrote:

Screen Shot 2017-03-21 at 9.31.57 PM.png

It was quite for awhile. The faces were more squishy. Somebody said, “hmm.” I said, “I am having a hard time doing this without a white board.  Does anybody else need a white board?”

I don’t think I was finished asking the question before everybody was grabbing white boards and markers out of the container.  I got to work.  After a few minutes, I looked up and noticed several kids had started to check in with each other.  M was sitting next to me. She had drawn three different models on her whiteboard.  Each one had shown the answer as 4. Her board kind of looked like this:

Screen Shot 2017-03-21 at 10.47.02 PM.png

She said to me, “I am trying to use an area model, but it is really hard to use an area model to solve fraction division problems.” I looked at her white board. I think she was referring to the diagram in the lower right. I sidled up next to her.  I told her, “I struggle with using the area model to show division problems.  I have a hard time remembering which part of the model is missing.” She looked at me with the biggest smile and said, “you just made me feel really good. I don’t know how to do something and it felt good to hear that you didn’t know how to do it either.  You know how that happens sometimes?”

“I do.”

At that point, she looked at my white board. I had drawn a number line. She said, “you got 6 for an answer and I got 4.”

“Yeah,” I said. “I noticed that too.”

She stared at my work for a little while. She said, “Your answer makes sense to me, but so does mine.”

I asked her to tell me about hers.  She said, “Well, I drew four wholes and then I shaded in sections of two thirds.  There are 4 sections of two thirds.”

At that point, Sue called everybody back to the rug.  She said, “I noticed that some people got different answers. I heard a lot of you talking about your answers and trying to help each other see whether or not they made sense.”

W said, “At first I thought the answer was 4 twelfths, but then E helped me figure out what I was doing wrong.” He walked up to the board and started to draw a long skinny rectangle.

“Oh!” K added, “You forgot about the whole.  You thought it was 1, not 4 wholes.”

“Yup.” W divided his four wholes into thirds and colored in four two-third sized pieces.

Screen Shot 2017-03-21 at 9.56.11 PM.pngM said, “I got 4 too, but not twelfths.  I got 4 groups of two thirds.”

Now, somebody else chimed in.  She said, “you can make more groups of two thirds.  You can put those thirds together.”

M said, “Ooohhhhhhhh! It is six!”  She started coloring in her extra thirds to make two more sections of two thirds.”

“Yes!”  W agreed.  “That is exactly what I did.” He proceeded to show us how to combine the extra thirds in his diagram.

At this point, Mr. Getty, one of the visiting sixth teachers asked the kids, “How do you know which strategy to use?”

Somebody said, “it depends. Sometimes you use a strategy because you are really comfortable with it so you are pretty sure it will work, but other times, you use a strategy because you are trying it out. Maybe it is hard for you but you want to try it to understand it better. Kind of like Mrs. Hogan with the number line.”

M looked at me and said, “or like us with the area model.”

I smiled.

The discussion went on to include how some kids like to use multiplication to check their answer or how it is helpful to make the groups of two thirds next to each other in the picture.  We muddled through some stuff.  We noticed a pattern that if you are dividing a whole number by a unit fraction you can multiply the whole number by the denominator and get the answer. Sue told us the kids have noticed this before.

“But!” somebody countered, “That won’t work for 4 divided by two thirds because 4 times 3 is 12.”

“Hmmmm,” I said. “Maybe we should try this out for awhile and see what happens.”

On the way home, I was debriefing the lesson in my head.    I wished I would have asked the kids if they ever chose a strategy based on the number. Nobody saw a relationship between 2 divided by 1/3 and 4 divided by 2/3 – including me because I didn’t take enough time to plan.  But how about M telling me I made her feel good!  That just made my week. I wondered if I let the number talk go on too long and should I have suggested whiteboards? But W got up on his own to tell his whole class that he got the wrong answer!  That kid has come so far in 5 years. I wondered if it was okay to use the language “groups of” when we describe dividing fractions. But Sue!  How about Sue?  Three years ago, when I walked into her classroom, her kids were sitting at desks lined up in rows and listening to her explain how to do the algorithm while they waited patiently for there practice worksheets.

We laughed about this at our debriefing meeting with the sixth grade teachers.  They asked her, “what made you change?”  She said, “I stopped being scared. I found a place where I felt safe to take a risk and just be honest with my kids. I tell them, I am learning too and sometimes I have to go back to the algorithms because it is all I know, but I never stop at the algorithms. I always keep trying other strategies and models because that is how I learn to understand the math better and I love it!”

And that made me feel really good.